首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2411篇
  免费   118篇
  国内免费   155篇
林业   432篇
农学   129篇
基础科学   51篇
  969篇
综合类   656篇
农作物   141篇
水产渔业   78篇
畜牧兽医   98篇
园艺   110篇
植物保护   20篇
  2024年   13篇
  2023年   53篇
  2022年   68篇
  2021年   43篇
  2020年   45篇
  2019年   54篇
  2018年   52篇
  2017年   85篇
  2016年   101篇
  2015年   121篇
  2014年   108篇
  2013年   143篇
  2012年   179篇
  2011年   280篇
  2010年   175篇
  2009年   210篇
  2008年   152篇
  2007年   161篇
  2006年   114篇
  2005年   93篇
  2004年   87篇
  2003年   65篇
  2002年   37篇
  2001年   31篇
  2000年   37篇
  1999年   25篇
  1998年   25篇
  1997年   25篇
  1996年   24篇
  1995年   13篇
  1994年   10篇
  1993年   12篇
  1992年   7篇
  1991年   13篇
  1990年   7篇
  1989年   5篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1981年   2篇
排序方式: 共有2684条查询结果,搜索用时 46 毫秒
91.
Nitrous oxide emissions, nitrate, water-soluble carbon and biological O2 demand (BOD5) were quantified in different cropping systems fertilized with varying amounts of nitrogen (clayey loam, October 1991 to May 1992), in an aerated tank (March 1993 to March 1994), and in the nitrification-denitrification unit (March to July 1994) of a municipal waste water treatment plant. In addition, the N2O present in the soil body at different depths was determined (February to July 1994). N2O was emitted by all cropping systems (mean releases 0.13–0.35 mg N2O m-2 h-1), and all the units of the domestic waste water treatment plant (aerated tank 0–6.2 mg N2O m-2 h-1, nitrification tank 0–204,3 mg N2O m-2, h-1, denitrifying unit 0–2.2 mg N2O m-2 h-1). During the N2O-sampling periods estimated amounts of 0.9, 1.5, 2.4 and 1.4 kg N2O–N ha-1, respectively, were released by the cropping systems. The aerated, nitrifying and denitrifying tanks of the municipal waste water treatment plant released mean amounts of 9.1, 71.6 and 1.8 g N2O–N m-2, respectively, during the sampling periods.The N2O emission were significantly positively correlated with nitrate concentrations in the field plots which received no N fertilizer and with the nitrogen content of the aerated sludge tank that received almost exclusively N in the form of NH 4 + . Available carbon, in contrast, was significantly negatively correlated with the N2O emitted in the soil fertilized with 80 kg N ha-1 year. The significant negative correlation between the emitted N2O and the carbon to nitrate ratio indicates that the lower the carbon to nitrate ratio the higher the amount of N2O released. Increasing N2O emissions seem to occur at electron donorto-acceptor ratios (CH2O or BOD5-to-nitrate ratios) below 50 in the cropping systems and below 1200–1400 in the waste water treatment plant. The trapped N2O in the soil body down to a depth of 90 cm demonstrates that agricultural production systems seem to contain a considerable pool of N2O which may be reduced to N2 on its way to the atmosphere, which may be transported to other environments or which may be released at sometime in the future.Dedicated to Professor J.C.G. Ottow on the occasion of his 60th birthday  相似文献   
92.
Continuous half-hourly measurements of soil CO2 efflux made between January and December 2001 in a mature trembling aspen stand located at the southern edge of the boreal forest in Canada were used to investigate the seasonal and diurnal dependence of soil respiration (Rs) on soil temperature (Ts) and water content (θ). Daily mean Rs varied from a minimum of 0.1 μmol m−2 s−1 in February to a maximum of 9.2 μmol m−2 s−1 in mid-July. Daily mean Ts at the 2-cm depth was the primary variable accounting for the temporal variation of Rs and no differences between Arrhenius and Q10 response functions were found to describe the seasonal relationship. Rs at 10 °C (Rs10) and the temperature sensitivity of Rs (Q10Rs) calculated at the seasonal time scale were 3.8 μmol m−2 s−1 and 3.8, respectively. Temperature normalization of daily mean Rs (RsN) revealed that θ in the 0–15 cm soil layer was the secondary variable accounting for the temporal variation of Rs during the growing season. Daily RsN showed two distinctive phases with respect to soil water field capacity in the 0–15 cm layer (θfc, 0.30 m3 m−3): (1) RsN was strongly reduced when θ decreased below θfc, which reflected a reduction in microbial decomposition, and (2) RsN slightly decreased when θ increased above θfc, which reflected a restriction of CO2 or O2 transport in the soil profile.Diurnal variations of half-hourly Rs were usually out of phase with Ts at the 2-cm depth, which resulted in strong diurnal hysteresis between the two variables. Daily nighttime Rs10 and Q10Rs parameters calculated from half-hourly nighttime measurements of Rs and Ts at the 2-cm depth (when there was steady cooling of the soil) varied greatly during the growing season and ranged from 6.8 to 1.6 μmol m−2 s−1 and 5.5 to 1.3, respectively. On average, daily nighttime Rs10 (4.5 μmol m−2 s−1) and Q10Rs (2.8) were higher and lower, respectively, than the values obtained from the seasonal relationship. Seasonal variations of these daily parameters were highly correlated with variations of θ in the 0–15 cm soil layer, with a tendency of low Rs10 and Q10Rs values at low θ. Overall, the use of seasonal Rs10 and Q10Rs parameters led to an overestimation of daily ranges of half-hourly RsRs) during drought conditions, which supported findings that the short-term temperature sensitivity of Rs was lower during periods of low θ. The use of daily nighttime Rs10 and Q10Rs parameters greatly helped at simulating ΔRs during these periods but did not improve the estimation of half-hourly Rs throughout the year as it could not account for the diurnal hysteresis effect.  相似文献   
93.
Soil organic carbon (SOC) pool is the largest among terrestrial pools. The restoration of SOC pool in arable lands represents a potential sink for atmospheric CO2. Restorative management of SOC includes using organic manures, adopting legume-based crop rotations, and converting plow till to a conservation till system. A field study was conducted to analyze soil properties on two farms located in Geauga and Stark Counties in northeastern Ohio, USA. Soil bulk density decreased with increase in SOC pool for a wide range of management systems. In comparison with wooded control, agricultural fields had a lower SOC pool in the 0–30 cm depth. In Geauga County, the SOC pool decreased by 34% in alfalfa (Medicago sativa L.) grown in a complex rotation with manuring and 51% in unmanured continuous corn (Zea mays L.). In Stark County, the SOC pool decreased by 32% in a field systematically amended with poultry manure and 40% in the field receiving only chemical fertilizers. In comparison with continuous corn, the rate of SOC sequestration in Geauga County was 379 kg C ha−1 year−1 in no-till corn (2 years) previously in hay (12 years), 760 kg C ha−1 year−1 in a complex crop rotation receiving manure and chemical fertilizers, and 355 kg C ha−1 year−1 without manuring. The rate of SOC sequestration was 392 kg C ha−1 year−1 on manured field in Stark County.  相似文献   
94.
Stable isotope analysis is a powerful tool in the study of soil organic matter formation. It is often observed that more decomposed soil organic matter is 13C, and especially 15N-enriched relative to fresh litter and recent organic matter. We investigated whether this shift in isotope composition relates to the isotope composition of the microbial biomass, an important source for soil organic matter. We developed a new approach to determine the natural abundance C and N isotope composition of the microbial biomass across a broad range of soil types, vegetation, and climates. We found consistently that the soil microbial biomass was 15N-enriched relative to the total (3.2 ‰) and extractable N pools (3.7 ‰), and 13C-enriched relative to the extractable C pool (2.5 ‰). The microbial biomass was also 13C-enriched relative to total C for soils that exhibited a C3-plant signature (1.6 ‰), but 13C-depleted for soils with a C4 signature (−1.1 ‰). The latter was probably associated with an increase of annual C3 forbs in C4 grasslands after an extreme drought. These findings are in agreement with the proposed contribution of microbial products to the stabilized soil organic matter and may help explain the shift in isotope composition during soil organic matter formation.  相似文献   
95.
An experiment was carried out to determine how the late application of nitrogen (N) fertilizer affects the use of pre‐anthesis carbon reserves during the grain‐filling period of pot‐grown wheat with no water shortage. Increasing doses (equivalent to 0, 140, and 180 kg N ha–1) of N fertilizer were applied, either in two amendments (stages GS20 and GS30) or in three amendments (stages GS20, GS30, and GS37, according to Zadoks scale). The management of fertilizer by combining an increased N rate with late N application was able to stimulate canopy development, to raise photosynthetic capacity and carbohydrate accumulation during the vegetative stages, and to increase grain yield. Based on the dynamics of carbohydrate accumulation in the ear, three phases were differentiated during the grain‐filling period, whose temporary pattern remained stable regardless of the fertilizer management. The net remobilization of carbohydrates started 12 d after anthesis from the leaves and 28 d after anthesis from roots and stems. The increase of the N dose with late N application allowed on one hand a lower use of the pre‐anthesis carbon reserves in favor of greater de novo photosynthesis during the grain‐filling period, and on the other hand greater relative contribution of the leaf and ear C reserves to remobilization towards the grain. Further splitting the dose increased only the relative contribution of ear C reserves. The stem contribution seemed to be independent of N applied whereas the root contribution tended to diminish with late N application.  相似文献   
96.
试验以春油菜青油-46为供试材料,在花期进行剪叶处理,研究源的减少对库器官的分化和形成的影响,研究表明:油菜花期去叶减少了源的面积,影响了油菜光合产物的积累,使油菜株高降低,茎秆变细,分枝减少,角粒数下降,千粒重增加,角果大小、单位角果皮面积的生产力(PPA)、单位角果皮面积负担的籽粒数(SNPA)下降,生物产量和经济产量降低,对分枝产量的影响大于主花序,且去叶越多下降越大,其中去短柄叶的影响大于长柄叶。  相似文献   
97.
There are two common methods to characterize organic chemical composition of decomposing plant litter, a forest products method and a forage fiber method. These methods divide litter into a few fractions based on extractions using different solvents. In this study, equivalencies were established between the fractions of the methods. Some of the equivalencies were based on similarities in the fractionation methods, whereas some were estimated empirically. The equivalencies gave similar chemical composition for different litter types as measurements. The results were also comparable to, or for certain fractions even better than, those obtained using earlier conversion equations. The equivalencies established are suitable for converting the forage fiber fractions to the forest products fractions in litter decomposition studies. Thus, they increase possibilities to exchange data on litter chemical characteristics across the methods in decomposition studies.  相似文献   
98.
全球气候变化的前提下,低碳经济在我国得到迅速发展,特别是近2年发展尤其迅速。基于林业的新使命,介绍了低碳经济的内涵及其与林业的关系,最后在河南林业现状的基础上,从林业生态建设和林业政策建设两方面阐述了低碳经济对河南林业发展的影响,期望对河南林业的可持续发展提供参考。  相似文献   
99.
ABSTRACT

Boreal and temperate forests cover a large part of the Earth. Forest ecosystems are a key focus for research because of their role in the carbon (C) balance and cycle. Increasing atmospheric temperatures, different disturbances (fire, storm and insects) and forest management (clear-cutting) will change considerably the C status of forest ecosystems. Using the eddy covariance (EC) method, we can define interactions among environmental factors that influence the C-balance and whether a forest ecosystem is functioning as a C-sink or C-source or possibly is C-neutral. In our review of published studies of different disturbances, we found that most of the post-disturbance studies based on EC method focused on the effects of forest fire and clear-cutting, only a few studies studies focused on the effects of storms and insects. Generally a forest is a C-source until several years after disturbance and then a forest is able to absorb C and become a C-sink. Recovery to C-sink status required up to 20 years in clear-cut areas. Recovery following wildfire disturbance was much longer, possibly more than 50 years. Recovery to C-sink status required approximately 5 years after storm and insect outbreak, however we can not predict overall recovery period because of the missing data.  相似文献   
100.
Abstract

The study of plant diversity and its role in ecosystem functioning is becoming a central issue in ecology. The relationships between carbon storage and tree diversity of natural forest at small scale are still unclear. This research investigated these relationships in an old‐growth forest at Changbai Mountain, Northeast China. It was found that at small scale, tree carbon storage generally increases with increasing tree species richness, but for stands with same species richness, tree carbon storage varies dramatically. At the small scale, tree species evenness has a significantly linear relationship with nature logarithm of total tree carbon storage. The stand carbon storage of trees is mainly controlled by stand tree composition. Fraxinus mandshurica, Pinus koraiensis, Quercus mongolica, Tilia amurensis, and Acer mono contribute more than 85% of stand carbon storage of trees. Stands with similar tree composition at small scale have different soil organic carbon storage and nutrient contents. Tree species evenness has great impact on soil N content at the soil horizon less than 30 cm deep, but its impacts on C/N, P, K, and S contents are small. Tree density has a negative linear relationship with soil organic C and C∶N ratio at the soil horizon is less than 30 cm deep. The implication of our findings here for carbon sequestration in the Kyoto Protocol is also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号